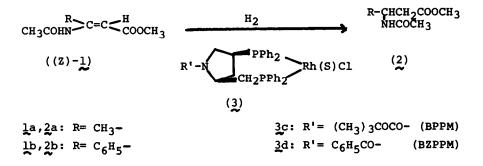
CATALYTIC ASYMMETRIC SYNTHESIS OF OPTICALLY ACTIVE β -AMINO ACIDS¹⁾


Kazuo Achiwa*and Tsunehiko Soga

Faculty of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113, Japan

(Received in Japan 12 January 1978; received in UK for publication 9 February 1978)

 β -Amino acids²⁾ are of great current interest because of their naturally occurring as the component of biologically active peptide antibiotics and also their structual relationship to the β -lactam, one of the most biologically important functional groups.

We wish to describe here the catalytic asymmetric hydrogenation of β acetylamino acrylic acid derivatives (1) using new bisphosphines, BPPM (3c)³) and BZPPM (3d)⁴) as the chiral ligands, to give the optically active β -amino acids (2). BPPM-rhodium complex has been already demonstrated to be a quite effective catalyst for the synthesis of optically active α -amino acids³, isoquinoline alkaloid (salsolidine)⁵, α -hydroxy esters⁶ and pantolactone⁷.

In a typical experiment, the asymmetric hydrogenation of (Z)-1b (2 mmole) was run in benzene (2 ml) under an initial hydrogen pressure of 50 atm at 50°C for 45 h in the presence of the rhodium catalyst which was prepared in situ from BZPPM (2.4×10⁻²mmole) and [Rh(1,5-hexadiene)Cl]₂(1.0×10⁻²mmole). The resulted reaction mixture was purified on preparative TLC (Silicagel, n-hexane-ether (1:2) as a developing solvent) to give 2b, mp 84-86°C, $[\alpha]_D^{20}$ +44.2°(c 2.006, methanol) in a 91.2% isolated yield. The absolute configuration and optical purity of 2b were determined by converting (+)-2b ($[\alpha]_D^{20}$ +44.2°(methanol)) into R(+)-β-N-acetylamino-β-phenylpropionic acid⁸⁾, mp 166-168°C, $[\alpha]_D^{20}$ +54.6°(c, 0714,

ethanol), on alkali hydrolysis. Similarly, 2a ($[\alpha]_D^{20}$ -14.0° (methanol)) was converted into $S(+)-\beta$ -aminopropionic acid⁹, mp 206-208°C, $[\alpha]^{20}_{R}$ +19.9°(c 2.896, H2O), on 6N-HCl hydrolysis. Therefore, the optical rotation of pure S-2a and R-2b were calculated to be $[\alpha]_D$ -26.1° (methanol) and $[\alpha]_D$ +83.4° (methanol) respectively.

The results on the asymmetric hydrogenation of (Z)-la and (Z)-lb with BPPM (3c) or (BZPPM(3d)-rhodium complex in benzene or methanol as a solvent are listed in Table I.

Table I. Asymmetric hydrogenation of methyl ß-acetamidoacrylate^{a,b)}

Substrate (R)		Chiral reagent So (R')		lvent Conversion (%)		[a] <mark>20</mark> (MeOH) (°)	Optical y.(conf.) (%)	
C ₆ H ₅ C ₆ H ₅ C ₆ H ₅ CH ₃	(1b) (1b) (1b) (1a) (1a) (1a) (1a)	(СH ₃) ₃ СОСО (СH ₃) ₃ СОСО С ₆ H ₅ CO	(BPPM) (BZPPM) (BZPPM) (BPPM) (BPPM) (BZPPM)	Benzene Methanol Benzene Methanol Benzene Methanol Benzene Methanol	91.2 ^C) 95.7 ^C) 75.3 ^d) 100 ^d) 100 ^d)	- 2.2 +44.2 + 6.3 - 8.7	36.7 2.6 53.0 7.6 33.3 47.1 50.2 55.2	(R) (S) (R) (R) (S) (S) (S) (S)

a) All hydrogenations of 1b were run with 2 mmole of 1b, 0.01 mmole of [Rh(1,5-hexadiene)C1] and 0.024 mmole of bisphosphine in 2 ml of solvent at 50°C for 45 h under an initial hydrogen pressure of 50 atm. b) All hydrogenations of la were run with 4 mmole of la, 0.02 mmole of $[Rh(1,5-hexadiene)C1]_2$ and 0.048 mmole of bisphosphine in 4 ml of solvent under the same conditions as used with lb. c) Isolated yields. d) Vpc analysis. e) $[\alpha]_{D}$ -26.1° (MeOH) and $[\alpha]_{D}$ +83.4° (MeOH) were used for pure S-2a and R-2b respectively. See the Text.

Table I shows clearly that BZPPM-rhodium complex gave the better optical and chemical yields of the products than BPPM-rhodium complex and also the best optical yield (53.0%) of 2b was obtained when benzeme was used as a solvent whereas the better result (55.2% optical yield) was attained in the methanol solution on the synthesis of 2a.

Further active investigations along this line are under way.

REFERENCES AND NOTES

- 1) Asymmetric Reactions Catalyzed by Chiral Metal Complexes. VII.
- 2) cf, M.Furukawa, T.Okawara and Y.Terawaki, Chem. Pharm. Bull., 25, 1319 (1977) and references cited therein.
- 3) K.Achiwa, J.Am.Chem.Soc., 98,8265(1976). K.Achiwa, Chemistry Lett., 1977,777. 4) BZPPM, mp 160.5-161.5°C, $[\alpha]_{B}^{0}$ -79°(c 0.72, benzene) was synthesized from PPM³) with benzoyl chloride and triethylamine in benzene at rt.
- 5) K.Achiwa, Heterocycles, 8,248(1977).
- 6) I.Ojima, T.Kogure and K.Achiwa, J.C.S., Chem. Comm., <u>1977</u>, 428. K.Achiwa, Tetrahedron Lett., 1977, 3735.
- 7) K,Achiwa,T.Kogure and I.Ojima, Tetrahedron Lett., 1977,4431.
- S.G.Cohen and S.Y.Weinstein, J.Am.Chem.Soc., <u>86</u>, 725 (1964).
- 9) K.Balenovic, D.Cerar and Z.Fuks, J.Chem.Soc., 1952, 3316.